MATH 118: Midterm 2 Key

Name: _____

Directions:

- * Show your thought process (commonly said as "show your work") when solving each problem for full credit.
- * If you do not know how to solve a problem, try your best and/or explain in English what you would do.
- * Good luck!

Problem	Score	Points
1		10
2		10
3		10
4		10
5		10
		50

- 1. Short answer questions:
 - (a) Given the function

$$F(x) = \sqrt{x^2 - 2}$$

find two functions f, g where $f \circ g = F$. You are not allowed to choose f(x) = x or q(x) = x.

$$f(x) = \sqrt{x}$$
 and $g(x) = x^2 - 2$

(b) Determine whether x = 1 is a solution to the equation

$$\frac{2}{x} - \frac{1}{2x-1} = 1$$

using calculations.

A few of you solved the equation. To check solutions, just plug in x = 1 and see if LHS = RHS.

LHS =
$$\frac{2}{1} - \frac{1}{2 \cdot 1 - 1} = 2 - \frac{1}{1} = 2 - 1 = 1 = RHS$$

x = 1 is a solution.

(c) If x = -2 is a x-intercept of P(x), what must be a factor of P(x)?

$$(x - (-2)) = (x + 2)$$

(d) True or False: The function $g(x) = \sqrt{2x+2}$ is shifted to the right two units from $f(x) = \sqrt{x}$.

False.

We have $g(x) = \sqrt{2x + 2} = \sqrt{2(x + 1)}$.

The correct shift is 1 to the left.

- 2. Solve the following equations and inequalities:
 - (a) $-2x 3 \le 5$

Don't forget to flip the inequality when dividing by a negative.

$$2x - 3 \le 5$$
$$-2x \le 8$$
$$x \ge -4$$

 $x \ge -4$

(b) $\sqrt{8x-1} = 3$

Root is isolated. Square both sides and treat like a linear equation.

$$\sqrt{8x - 1} = 3$$
$$\left(\sqrt{8x - 1}\right)^2 = 3^2$$
$$8x - 1 = 9$$
$$8x = 10$$
$$x = \frac{10}{8} = 10$$

5 4

1

$$x=\frac{5}{4}$$

(c)
$$\frac{1}{x} - \frac{1}{x-1} = 4$$

Multiply both sides by the LCD x(x - 1) to rescue x from denominator.

$$x(x-1) \cdot \left(\frac{1}{x} - \frac{1}{x-1}\right) = 4 \cdot x(x-1)$$

$$x(x-1) \cdot \frac{1}{x} - x(x-1) \cdot \frac{1}{x-1} = 4x^2 - 4x$$

$$x - 1 - x = 4x^2 - 4x$$

$$0 = 4x^2 - 4x + 1$$

$$0 = (2x-1)^2$$

$$A^2 - 2AB + B^2 \text{ with } A = 2x, B = 0$$

$$0 = 2x - 1$$

Take roots of both sides

$$x = \frac{1}{2}$$

- 3. Perform the given instruction.
 - (a) Determine the end behavior for the polynomial $P(x) = -x^3(2x-3)^2(x-2)^5$. Find the leading **term**. A few of you picked $-x^3$ which is a **factor**, not a term. The leading term is $-x^3 \cdot (2x)^2 \cdot x^5 = -x^3 \cdot 4x^2 \cdot x^5 = -4x^{10}$.

Leading coefficient is -4 < 0, with even degree. So the end behavior is

 $y \to -\infty$ as $x \to \infty$ and $y \to -\infty$ as $x \to -\infty$

(b) Complete the square for the quadratic function $f(x) = 2x^2 - 8x - 3$.

We need $x^2 + bx$ where the coefficient of x^2 is 1. Currently, it is 2. So:

$$2x^{2} - 8x - 3 = 2(x^{2} - 4x) - 3$$

= $2(x^{2} - 4x + 4 - 4) - 3$ $b = -4 \operatorname{so} \left(\frac{b}{2}\right)^{2} = \left(\frac{-4}{2}\right)^{2} = (-2)^{2} = 4$
= $2\left[(x^{2} - 4x + 4) - 4\right] - 3$
= $2\left[(x - 2)^{2} - 4\right] - 3$ $A^{2} - 2AB + B^{2}$ with $A = x, B = 2$
= $2(x - 2)^{2} - 8 - 3$ Dist. Law
= $2(x - 2)^{2} - 11$

(c) Suppose $g(x) = 1 + \sqrt{-2x - 2}$. Write the order of transformations you would use to transform $f(x) = \sqrt{x}$ into g(x).

Do not graph.

Put into $A + B \cdot f(C(x + D))$ form by factoring out -2, getting -2x - 2 = -2(x + 1).

We have $g(x) = 1 + \sqrt{-2x - 2} = \frac{1}{3} + \sqrt{-\frac{2}{3}(x + 1)}$ with transformations

(1) Reflection around *y*-axis

- (2) Horizontal shrink by a factor of $\frac{1}{2}$
- 3 Vertical shift up 1 unit
- (4) Horizontal shift left 1 unit

(d) Find the inverse of the function $f(x) = \frac{x-1}{3x-2}$.

You may use the fact that f(x) is one-to-one.

1 One-to-one. Inverse exists.

2 Write
$$y = \frac{x-1}{3x-2}$$
.

3 Solve for x. Follow 4 steps in Section 1.4.

$$y = \frac{x-1}{3x-2}$$

$$(3x-2) \cdot y = \frac{x-1}{3x-2} \cdot (3x-2)$$

$$3xy - 2y = x - 1$$

$$3xy - x = 2y - 1$$

$$x(3y-1) = 2y - 1$$

$$x = \frac{2y-1}{3y-1}$$
Global terms
Get x on one side
Get x on

4 Swap.
$$y = \frac{2x - 1}{3x - 1}$$
.
Result: $f^{-1}(x) = \frac{2x - 1}{3x - 1}$

4. Suppose $P(x) = x^3 - 3x^2 - x + 3$. Sketch a graph of P(x) using the four step process.

1 *x*-intercepts, Solve P(x) = 0.

Many of you got this problem incorrect. When solving "polynomial = 0", convert to factors and set each factor to 0. Since we have 4 terms and GCF doesn't work, we have to group.

$$x^{3} - 3x^{2} - x + 3 = 0$$

$$x^{2}(x - 3) - (x - 3) = 0$$

$$(x - 3)(x^{2} - 1) = 0$$

$$x - 3 = 0 \qquad x^{2} - 1 = 0$$

$$\boxed{x = 3} \qquad x^{2} = 1$$

$$\boxed{x = \pm\sqrt{1} = \pm 1}$$

So x = 3, 1, -1 are the intercepts.

2 Test points for sign. Use factored form $P(x) = (x-3)(x^2-1)$ for quick computation of signs.

3 End behavior. Leading term is x^3 , odd degree, leading coefficient 1 > 0. So end behavior is $y \to \infty$ as $x \to \infty$ and $y \to -\infty$ as $x \to -\infty$.

- 5. Perform the given instruction.
 - (a) Find the domain for each of the following functions:

i.
$$h(x) = \frac{1}{\sqrt{x-1}}$$

1) Problems.
A. Solve $\sqrt{x-1} = 0$. Squaring both sides,
 $x-1 = 0$ so $x = 1$.
B. Solve $x - 1 < 0$. Adding one, $x < 1$.
B. Solve $x - 1 < 0$. Adding one, $x < 1$.
Domain: $(1, \infty)$
ii. $f(x) = \frac{1}{x^3 - 4x}$
1) Problems.
A. Solve $x^3 - 4x = 0$. We have
 $x^3 - 4x = 0$
 $x(x^2 - 4) = 0$
 $x = 0$ $x^2 - 4 = 0$
 $x^2 = 4$
 $x = \pm\sqrt{4} = \pm 2$
So $x = 0, \pm 2$.
(2) Remove problems $x = 1$ and $x < 1$.
Domain: $(1, \infty)$
B. No root, N/A.
A. Solve $x^3 - 4x = 0$. We have
 $x^2 - 4 = 0$
 $x = \pm\sqrt{4} = \pm 2$
So $x = 0, \pm 2$.
(- $\infty, -2$) $\cup (-2, 0) \cup (0, 2) \cup (2, \infty)$]

(a) Consider $f(x) = x^2 - 2$ and g(x) = -2x + 1. Expand **and simplify** the following:

i.
$$g \circ f$$

 $(g \circ f)(x) = g(f(x))$
 $= g(x^2 - 2)$
 $= -2(x^2 - 2) + 1$
 $= -2x^2 + 4 + 1$
 $= -2x^2 + 5$
iii. $f(x)g(x)^1$
 $f(x)g(x) = (x^2 - 2)(-2x + 1)$
 $= -2x(x^2 - 2) + (x^2 - 2)$
 $= -2x^3 + 4x + x^2 - 2$
 $= -2x^3 + x^2 + 4x - 2$

ii.
$$f(x) - 3g(x)$$

 $f(x) - 3g(x) = x^2 - 2 - 3(-2x + 1)$
 $= x^2 - 2 + 6x - 3$
 $= x^2 + 6x - 5$

¹This problem should have said to only expand. You got full credit for correct expansion :)